Guest Post – The Ultimate Online Privacy Guide Part 1

Privacy has taken a huge hit since the introduction of the Internet.  Google and Facebook are data mining our lives for information they can sell to advertisers and marketers.  Our own government spies on us illegally without stop.  Our information is stored on websites, and scooped up in huge data breaches, ending up in the hands of cyber-criminal gangs.  What can we do about it?  Today we open a three part series of guest posts on the subject of privacy.


by Douglas Crawford

Introduction

Edward Snowden’s NSA spying revelations highlighted just how much we have sacrificed to the gods of technology and convenience something we used to take for granted, and once considered a basic human right – our privacy.

It is just not just the NSA. Governments the world over are racing to introduce legislation that allows to them to monitor and store every email, phone call and Instant Message, every web page visited, and every VoIP conversation made by every single one of their citizens.

The press has bandied parallels with George Orwell’s dystopian world ruled by an all-seeing Big Brother about a great deal. They are depressingly accurate.

Encryption provides a highly effective way to protect your internet behavior, communications, and data. The main problem with using encryption is that its use flags you up to organizations such as the NSA for closer scrutiny.

Details of the NSA’s data collection rules are here. What it boils down to is that the NSA examines data from US citizens, then discards it if it’s found to be uninteresting. Encrypted data, on the other hand, is stored indefinitely until the NSA can decrypt it.

The NSA can keep all data relating to non-US citizens indefinitely, but practicality suggests that encrypted data gets special attention.

If a lot more people start to use encryption, then encrypted data will stand out less, and surveillance organizations’ job of invading everyone’s privacy will be much harder. Remember – anonymity is not a crime!

How Secure is Encryption?

Following revelations about the scale of the NSA’s deliberate assault on global encryption standards, confidence in encryption has taken a big dent. So let’s examine the current state of play…

Encryption Key Length

Key length is the crudest way of determining how long a cipher will take to break. It is the raw number of ones and zeros used in a cipher. Similarly, the crudest form of attack on a cipher is known as a brute force attack (or exhaustive key search). This involves trying every possible combination to find the correct one.

If anyone is capable of breaking modern encryption ciphers it is the NSA, but to do so is a considerable challenge. For a brute force attack:

A 128-bit key cipher has 3.4 x10(38) possible keys. Going through each of them would thousands of operations or more to break.

In 2011 the fastest supercomputer in the word (the Fujitsu K computer located in Kobe, Japan) was capable of an Rmax peak speed of 10.51 petaflops. Based on this figure, it would take Fujitsu K 1.02 x 10(18) (around 1 billion) years to crack a 128-bit AES key by force.
In 2016 the most powerful supercomputer in the world is the NUDT Tianhe-2in Guangzhou, China. Almost 3 times as fast as the Fujitsu K, at 33.86 petaflops, it would “only” take it around a third of a billion years to crack a 128-bit AES key. That’s still a long time, and is the figure for breaking just one key.

A 256-bit key would require 2(128) times more computational power to break than a 128-bit one.
The number of years required to brute force a 256-bit cipher is 3.31 x 10(56) – which is about 20000….0000 (total 46 zeros) times the age of Universe (13.5 billion or 1.35 x 10(10) years!

128-bit Encryption

Until the Edward Snowden revelations, people assumed that 128-bit encryption was in practice uncrackable through brute force. They believed it would be so for around another 100 years (taking Moore’s Law into account).

In theory, this still holds true. However, the scale of resources that the NSA seems willing to throw at cracking encryption has shaken many experts’ faith in these predictions. Consequently, system administrators the world over are scrambling to upgrade cipher key lengths.

If and when quantum computing becomes available, all bets will be off. Quantum computers will be exponentially more powerful than any existing computer, and will make all current encryption ciphers and suites redundant overnight.

In theory, the development of quantum encryption will counter this problem. However, access to quantum computers will initially be the preserve of the most powerful and wealthy governments and corporations only. It is not in the interests of such organizations to democratize encryption.

For the time being, however, strong encryption is your friend.

Note that the US government uses 256-bit encryption to protect ‘sensitive’ data and 128-bit for ‘routine’ encryption needs.

However, the cipher it uses is AES. As I discuss below, this is not without problems.

Ciphers

Encryption key length refers to the amount of raw numbers involved. Ciphers are the mathematics used to perform the encryption. It is weaknesses in these algorithms, rather than in the key length, that often leads to encryption breaking.

By far the most common ciphers that you will likely encounter are those OpenVPN uses: Blowfish and AES. In addition to this, RSA is used to encrypt and decrypt a cipher’s keys. SHA-1 or SHA-2 are used as hash functions to authenticate the data.

AES is generally considered the most secure cipher for VPN use (and in general). Its adoption by the US government has increased its perceived reliability, and consequently its popularity. However, there is reason to believe this trust may be misplaced.


The next post continues the theme of privacy, looking at the role NIST, the National Institute for Standards and Technology, plays in the world of encryption.  And thanks to Best VPN for their permission to republish this article

0

About the Author:

Cybersecurity analyst, pen-tester, trainer, and speaker. Owner of the WyzCo Group Inc. In addition to consulting on security products and services, Bob also conducts security audits, compliance audits, vulnerability assessments and penetration tests. Bob also teaches Cybersecurity Awareness Training classes. Bob works as an instruction for CompTIA’s non-profit IT-Ready Program in the Twin Cities. IT-Ready is a tuition free 8-week program designed to teach students of all ages the fundamentals of IT support to prepare them for an entry level position in Information Technology Support. Graduates of the classes take the exams to become CompTIA A+ certified. Bob is a frequent speaker at conferences such as the Minnesota Bloggers Conference, Secure360 Security Conference2016, 2017, 2018, 2019, the (ISC)2 World Congress 2016, and the ISSA International Conference 2017, and many local community organizations, including Chambers of Commerce, SCORE, and several school districts. Bob has been blogging on cybersecurity since 2006 at http://wyzguyscybersecurity.com

Add a Comment


This site uses Akismet to reduce spam. Learn how your comment data is processed.